PhenoPlasm: a database of disruption phenotypes for malaria parasite genes

نویسندگان

  • Theo Sanderson
  • Julian C Rayner
چکیده

Two decades after the first Plasmodium transfection, attempts have been made to disrupt more than 3,151 genes in malaria parasites, across five Plasmodium species. While results from rodent malaria transfections have been curated and systematised, empowering large-scale analysis, phenotypic data from human malaria parasite transfections currently exists as individual reports scattered across a the literature. To facilitate systematic analysis of published experimental genetic data across Plasmodium species, we have built PhenoPlasm ( http://www.phenoplasm.org), a database of phenotypes generated by transfection experiments in all Plasmodium parasites. The site provides a simple interface linking citation-backed Plasmodium reverse-genetic phenotypes to gene IDs. The database has been populated with phenotypic data on 367 P. falciparum genes, curated from 176 individual publications, as well as existing data on rodent Plasmodium species from RMgmDB and PlasmoGEM. This is the first time that all available data on P. falciparum transfection experiments has been brought together in a single place. These data are presented using ortholog mapping to allow a researcher interested in a gene in one species to see results across other Plasmodium species. The collaborative nature of the database enables any researcher to add new phenotypes as they are discovered. As an example of database utility, we use the currently available datasets to identify RAP (RNA-binding domain abundant in Apicomplexa)-domain containing proteins as crucial to parasite survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission

The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating...

متن کامل

Phenotypic Screens Identify Parasite Genetic Factors Associated with Malarial Fever Response in Plasmodium falciparum piggyBac Mutants

Malaria remains one of the most devastating parasitic diseases worldwide, with 90% of the malaria deaths in Africa in 2013 attributable to Plasmodium falciparum. The clinical symptoms of malaria include cycles of fever, corresponding to parasite rupture from red blood cells every 48 h. Parasite pathways involved in the parasite's ability to survive the host fever response, and indeed, the funct...

متن کامل

Blocking malaria parasite invasion of mosquito salivary glands.

Release of genetically engineered mosquitoes resistant to parasite infections has been proposed as a novel way to control malaria transmission, and several important advances have been made in anticipation of testing this approach. In particular, the development of synthetic effector genes that block parasite development in mosquito hosts has exploited a number of different mechanisms that resu...

متن کامل

Culture adaptation of malaria parasites selects for convergent loss-of-function mutants

Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide...

متن کامل

Whole-transcriptome analysis of Plasmodium falciparum field isolates: identification of new pathogenicity factors.

BACKGROUND Severe malaria and one of its most important pathogenic processes, cerebral malaria, involves the sequestration of parasitized red blood cells (pRBCs) in brain postcapillary venules. Although the pathogenic mechanisms underlying malaria remain poorly characterized, it has been established that adhesion of pRBCs to endothelial cells (ECs) can result in cell apoptosis, which in turn ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017